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Abstract 27 

A dynamical–statistical model is developed for forecasting week-2 severe weather (hail, 28 

tornadoes, and damaging winds) over the U.S.  Supercell Composite Parameter (SCP) is used as a 29 

predictor, which is derived from the 16-day dynamical forecasts of the National Centers for 30 

Environmental Prediction (NCEP) Global Ensemble Forecast System (GEFS) model and 31 

represents the large-scale convective environments influencing severe weather.  The hybrid model 32 

forecast is based on the empirical relationship between GEFS hindcast SCP and observed weekly 33 

severe weather frequency during 1996–2012, the GEFS hindcast period.  Cross validations suggest 34 

that the hybrid model has a low skill for week-2 severe weather when applying simple linear 35 

regression method at 0.5o × 0.5o (latitude × longitude) grid data.  However, the forecast can be 36 

improved by using the 5o × 5o area-averaged data.  The forecast skill can be further improved by 37 

using the empirical relationship depicted by the singular value decomposition method, which takes 38 

into account the spatial covariations of weekly severe weather.  The hybrid model was tested 39 

operationally in spring 2019 and demonstrated skillful forecasts of week-2 severe weather 40 

frequency over the U.S. 41 

  42 
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1.  Introduction 43 

Large hail (size ≥ 1 inch), tornadoes, and high winds are severe convective storm events, 44 

which cause significant property damages with billions of dollars in losses and personal injuries 45 

or deaths every year in the U.S. (NOAA, 2019).  Some of these events are characterized by small 46 

spatial scales and short lifetime (e.g., severe thunderstorms of 15 to 25 km in diameter and a 47 

lifetime of 20 to 30 minutes), and thus, pose challenges in forecasting severe weather.  Skillful 48 

severe weather outlooks and warnings are of critical importance to the National Oceanic and 49 

Atmospheric Administration (NOAA)/National Weather Service’s (NWS) mission to protect lives 50 

and property.   51 

In general, severe weather forecasts can be divided into three different timescales, namely, 52 

operational weather forecasts, sub-seasonal forecasts, and seasonal forecasts.  The operational 53 

weather forecasts for 1 to 7 days with a numerical model are mainly determined by atmospheric 54 

initial conditions.  Currently, the NOAA’s Storm Prediction Center (SPC) produces convective 55 

outlooks for days 1 through 8.  The NOAA’s Climate Prediction Center (CPC) also includes severe 56 

weather on its U.S. Day 3–7 Hazards Outlook.  In contrast, the seasonal forecasts are from one 57 

month to several seasons (e.g., Tippett et al. 2012; Lepore et al. 2017, 2018).  At this timescale, 58 

slow evolving components, such as sea surface temperature (SST), sea ice, soil moisture, and low-59 

frequency modes, provide the sources of predictability (e.g., Shepherd et al. 2009; Allen et al. 60 

2015; Lee et al. 2016; Trapp and Hoogewind 2018).  Between weather and seasonal forecasts 61 

reside the sub-seasonal forecasts from week 2 to week 4.  At this timescale, the sources of 62 

predictability for severe weather are limited, which include the tropical Madden-Julian oscillation 63 

(MJO, Barrett and Gensini 2013; Thompson and Roundy 2013; Baggett et al. 2018) and the global 64 

wind oscillation (GWO, Gensini and A. Marinaro 2016).  In addition, while the influence of initial 65 
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condition diminishes, the time-average is small enough that the signal associated with the slow 66 

evolving components is not appreciable compared to noise.   67 

Developing week-2 to week-4 severe weather outlooks is one of the NOAA’s Climate 68 

Prediction Center (CPC) projects under the Office of Science and Technology Policy (OSTP) 69 

initiative (NWS, 2016).  The goals of this project are (1) to develop and perform evaluation of 70 

week-2 severe weather model guidance, and (2) to explore the potential for developing 71 

experimental forecast tools for week-3 and week-4 severe weather.  As the first step towards 72 

meeting these goals, the present work focuses on developing a week-2 severe weather outlook for 73 

the U.S. 74 

Given their small spatial scales and short lifetime, severe convective storms cannot be 75 

sufficiently resolved by current operational global forecasting models (Weisman et al. 1997; 76 

Gensini and Mote 2014).  However, these global models can predict the large-scale environments 77 

that may affect severe weather, even beyond one week.  Previous studies (Thompson et al. 2003, 78 

2007) introduced a variable, the so-called Supercell Composite Parameter (SCP), to characterize 79 

large-scale convective environments that favor right-moving supercells in the Great Plains.  It 80 

should be noted that the use of the SCP implies severe weather is produced by supercell 81 

thunderstorms, primarily for hail and tornadoes, and is not necessarily related to quasi-linear 82 

convective systems (QLCSs).  The latter is a significant source of damaging wind (e.g., Ashley et 83 

al. 2019).  Carbin et al. (2016) use the SCP predicted by a dynamical model as environment 84 

guidance for extended-range forecasts of severe thunderstorms.  More recently, Gensini and 85 

Tippett (2019) also use model predicted SCP to explicitly forecast day 1–15 tornado and hail 86 

frequencies over the U.S.  They choose different SCP thresholds for tornado (SCP ≥ 4) and hail 87 

(SCP ≥ 2).  Skillful forecasts are found to day 9 for tornado and day 12 for hail, respectively.  The 88 
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forecast tool developed in this study will provide a general guide to the expected overall severe 89 

weather activity during week 2.  It does not predict individual severe weather events for any 90 

particular day and time. 91 

The present study complements Carbin et al. (2016) and Gensini and Tippett (2019) by 92 

taking another step to explicitly forecast week-2 severe weather based on dynamical model 93 

predicted week-2 SCP and the empirical relationship between model predicted SCP and observed 94 

weekly severe weather over a historical record, a dynamical–statistical approach (e.g., Wang et al. 95 

2009; Harnos et al. 2017).  Based on our experience with this methodology, the forecast skill of 96 

such a hybrid model will largely be determined by the strength of the statistical relationship 97 

between the SCP and severe weather.  We will show that weekly severe weather averaged over a 98 

relatively large domain (e.g., 5o × 5o latitude × longitude box) is better related to the large-scale 99 

environments (SCP) than that over a small area (0.5o × 0.5o box).  The same approach of regional 100 

average has been used to forecast subseasonal severe weather (e.g., Lepore et al. 2018), as well as 101 

lightning (Tippett and Koshak 2018).  The forecast skill can also be improved by considering the 102 

spatial covariations of weekly severe weather with its surroundings. 103 

The present study is aimed at developing a forecast tool for week-2 severe weather over 104 

the U.S.  The primary foci are (a) to characterize the seasonality and spatial coherence of severe 105 

weather in the U.S., (b) to establish empirical relationships between large-scale environments 106 

(SCP) and weekly severe weather, (c) to develop and cross-validate the hybrid dynamical–107 

statistical forecast model, and (d) to test the model in real-time forecasting during spring 2019. 108 

 109 

2. Data and methodology 110 
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The data used in this study consist of both observational and reanalysis data, as well as 111 

model forecast/hindcast data.  For observations, the National Weather Service (NWS) Local Storm 112 

Reports (LSRs, available at https://www.spc.noaa.gov/wcm/#data) are used.  The National Centers 113 

for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR, Saha et al. 114 

2010) are also employed.  The LSRs include three types of severe weather, namely, hail, tornado, 115 

and damaging wind, as well as their location, date/time, and intensity.  In this paper, we focus on 116 

developing the forecast tool for total weekly (or 7-day) number of severe weather events, referred 117 

to as LSR3 hereafter, without distinguishing them for any specific types of severe weather.  Daily 118 

LSR data are re-gridded to a 0.5o × 0.5o (latitude × longitude) grid by counting the number of LSRs 119 

within a 24-hour period for each 0.5o × 0.5o box centered at each grid point.  Weekly (or 7-day) 120 

LSR values are the sum of corresponding 7-day LSRs (e.g., Monday to Sunday, Tuesday to 121 

Monday).   122 

Following Carbin et al. (2016), the SCP is expressed as 123 

SCP = (CAPE/1000 J kg1) × (SRH/50 m2 s2) × (BWD/20 m s1), 124 

and 125 

BWD = [ (u1 – u2)
2 + (v1 – v2)

2 ]0.5,  126 

where CAPE is convective available potential energy, SRH is storm-relative helicity, and BWD is 127 

bulk wind difference between 500 hPa (u1, v1) and 10 m (u2, v2).  Three constants are used to 128 

normalize SCP so that when SCP is greater than 1, severe weather is likely to occur.  To derive 129 

SCP from both reanalysis data (CFSR; Saha et al. 2010) and model forecasts, 6-hourly lower-level 130 

CAPE in the layer of 180 – 0 hPa above the ground and SRH in the layer of 3000 – 0 m above the 131 

ground are directly taken from the reanalysis data and model forecast output.  It should be noted 132 

that when the deep-layer wind shear BWD is derived using winds at 500 hPa and 10 m, it could 133 

https://www.spc.noaa.gov/wcm/#data
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be significantly underestimated on the high elevations where 500 hPa is closer to the model 134 

surface, as discussed by Gensini and Ashley (2011).  A recent study by King and Kennedy (2019) 135 

find that CAPE, SRH, and BWD in CFSR have negative biases, as compared to sounding data, 136 

leading to a negative bias in SCP.  Similar to Carbin et al. (2016), daily SCP is the average of 6-137 

hourly SCP from 12Z to 12Z (average of five instantaneous values at 12Z, 18Z, 00Z, 06Z, and 138 

12Z).   139 

Given that the current operational global dynamical models cannot resolve the 140 

characteristic spatial and temporal scales of severe weather, the forecast tool for LSR3 developed 141 

in this study is a hybrid dynamical-statistical model (e.g., Wang et al. 2009; Mehta et al. 2014; 142 

Harnos et al. 2017).  Briefly, it uses the dynamical model predicted SCP as a predictor, and then 143 

forecasts LSR3 based on a statistical relationship between model predicted SCP and observed 144 

LSR3 in the historical record.  Although dynamical models can provide some useful guidance for 145 

depicting large-scale patterns which are associated with strongly-forced synoptically evident 146 

events, they clearly have no skill with weakly forced or mesoscale type severe weather events, 147 

especially at the week-2 time range.  The merit of bringing in the statistical component is to help 148 

illuminate where the dynamical model guidance on the large scale is hinting at synoptic-scale 149 

severe weather potential.  The dynamical model employed is the NCEP Global Ensemble Forecast 150 

System (GEFS, Wei et al. 2008), an atmospheric model with observed SST relaxed to climatology 151 

as a low boundary.  It should be noted that using climatological SST as boundary forcing may 152 

reduce forecast quality, especially since moist return flow from the Gulf of Mexico is a critical 153 

parameter in severe weather events (e.g., Jung and Kirtman 2016).  Therefore, improving skill of 154 

SST forecasts could provide an opportunity to further improve skill.  The GEFS makes 16-day 155 
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forecasts with horizontal resolutions of T254 (55 km) for days 1–8 and T190 (70 km) for days 156 

9–16, and 42 vertical levels (Zhou et al. 2017).   157 

A 17-year GEFS hindcast dataset (Guan et al. 2015) is used to establish the statistical 158 

relationship between model SCP and observed LSR3.  The GEFS hindcasts are five members 159 

initialized at 00Z and four days apart with a total of 455 (91 × 5) 16-day forecasts each year from 160 

1996 to 2012.  The SCP derived from the GEFS hindcasts is the five-member ensemble mean 161 

value.  For the real-time prediction of LSR3, the operational GEFS products are used, which 162 

consist of 20 runs initialized every 6 hours with a daily total of 80 ensemble member forecasts.  163 

The model predicted week-1 (week-2) mean SCP is the average of 7-day SCP from the GEFS day-164 

1 to day-7 (day-8 to day-14) forecasts. 165 

The statistical relationship between the GEFS predicted SCP and observed LSR3 is the 166 

basis for the dynamical-statistical prediction, and the forecast skill of the hybrid model for LSR3 167 

largely depends on the strength of this relationship.  There are at least two ways to establish the 168 

relationship.  One is the simple linear regression method, in which the relation between SCP and 169 

LSR3 is found for each grid point, based on the SCP and LSR3 values only at that grid point over 170 

the GEFS hindcast period.  Therefore, the SCP–LSR3 relation based on the linear regression is not 171 

directly affected by the SCP values and several weather frequency at adjacent grid points.   172 

There are significant changes in the statistics of the LSR3 dataset over time (e.g., Tippett 173 

et al. 2015).  They were mostly caused by non-meteorological variability, such as observer 174 

availability, including population and local forecast office practices, and changes in observation 175 

procedures, such as changing hail thresholds (Verbout etal. 2006; Anderson et al. 2007; Allen and 176 

Tippett 2015; Edwards et al. 2018; Potvin et al. 2019).  The non-meteorological changes affect the 177 

quality of LSR3, such as trends, especially in early years (1950–1980).  Since the LSR3 data used 178 
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in this study are over the GEFS hindcast period from 1996 to 2012, the effect of the non-179 

meteorological factor on the data quality is expected to be small.  Additionally, damaging wind 180 

reports may underrepresent or overrepresent the severity of damage caused by severe weather 181 

(Trapp et al. 2006).  Therefore, caution should be taken when using the damaging wind data. 182 

The second method is the singular value decomposition (SVD) technique (e.g., Bretherton 183 

et al. 1992; Ting and Wang 1997; Wang and Ting 2000), which can objectively identify the co-184 

varying spatial patterns of SCP and LSR3 with maximum temporal covariance between the two 185 

fields.  In this method, an SVD analysis is performed using observed weekly mean LSR3 186 

(predictand) and GEFS predicted week-2 SCP (predictor), based on the covariance matrix between 187 

the two data fields over the GEFS hindcast period (1996–2012).  Each SVD mode consists of two 188 

spatial patterns and two time series for SCP and LSR3, respectively.  The relationships between 189 

GEFS SCP and LSR3 are represented by the three leading SVD modes.  Real-time week-2 LSR3 190 

can be predicted based on the SCP–LSR3 relationships depicted by the SVD analysis over the 191 

GEFS hindcast period, as well as the real-time GEFS week-2 SCP forecast, a methodology similar 192 

to Wang et al. (1999) and Pan et al. (2018) for predicting precipitation.  Specifically, the SVD-193 

based hybrid model first projects the real-time week-2 GEFS forecast SCP onto the three SCP 194 

SVD modes (SCP spatial patterns).  Associated with each SVD mode, the SCP projection 195 

coefficient is then multiplied by the correlation coefficient between the corresponding SCP and 196 

LSR3 SVD time series to obtain an LSR3 projection coefficient.  Finally, the week-2 LSR3 197 

anomalies associated with that SVD mode is obtained from the regressing LSR3 pattern against 198 

the SVD LSR3 time series, multiplied by the LSR3 projection coefficient.   199 

The forecast skill for week-2 severe weather is cross-validated over the GEFS hindcast 200 

period (1996–2012).  In this procedure, the forecast target year is removed from the data for 201 
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training the hybrid model with both the simple linear regression method and the SVD method.  The 202 

forecasts for the target year are then made with the statistical model based on the training data 203 

taken from the rest of 16 years.  The same procedure is repeated for each target year from 1996 to 204 

2012.  The forecast skill is evaluated by the anomaly correlation between the predicted and 205 

observed weekly LSR3.  The statistical significance of the anomaly correlation is determined by 206 

the two-tailed t test (Snedecor and Cochran 1989).  To derive a weekly (7-day) anomaly, 17-year 207 

(1996–2012) weekly climatologies for observations and model forecasts with different leads are 208 

constructed using observational data and model hindcast data, respectively, for each 7-day period 209 

of a calendar year with a total of 365 weekly (7-day) climatologies.  In this way, the annual cycle 210 

is removed from the weekly anomalies.  For a comparison purpose, the forecast skill for week-1 211 

severe weather is also displayed. 212 

 213 

3. Seasonality and spatial coherence of severe weather 214 

The seasonality of severe weather over the U.S. is examined first.  Figure 1 shows the 215 

observed climatological monthly total severe weather events (i.e., LSR3) from January to 216 

December, respectively.  The seasonal variation of LSR3 is characterized by frequent severe 217 

weather activity in spring and summer (Figs. 1c–1h) and less frequent activity in winter and fall 218 

(Figs. 1a, 1b, 1i–1l).  Regions of the highest activity are in the Central and Eastern U.S. during 219 

May and June (Figs. 1e, 1f) with maximum LSR3 greater than 10.  The U.S. severe weather 220 

frequency thus displays strong seasonal and geographical dependence, consistent with the severe 221 

weather monthly climatology documented in previous studies (e.g., Cintineo et al. 2012; Tippett 222 

et al. 2015). 223 
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Figure 1m shows the climatological monthly mean (thick red curve with dots) and weekly 224 

mean (7-day running mean, thin red curve) daily total LSR3 counts over the U.S. from January to 225 

December, as well as those for hail (blue), tornado (orange), and damaging wind (green), 226 

respectively.  The monthly mean daily LSR3 counts peak in June.  Both hail and damaging wind 227 

events significantly contribute to this peak.  The monthly mean hail counts have a maximum in 228 

May, whereas the monthly mean damaging wind events have a maximum in June.  Overall, the 229 

weekly (7-day mean, thin curves) severe weather frequency shows consistent seasonal variations 230 

as the monthly means.  Some fluctuations from one 7-day window to the next 7-day window are 231 

also observed. 232 

The contributions of individual types of severe weather to the observed climatological 233 

LSR3 are shown in Fig. 2 for winter (December – February, DJF), spring (March – May, MAM), 234 

summer (June – August, JJA), and fall (September – November, SON), respectively.  In general, 235 

hail dominates the severe weather frequency (greater than 60%) over the Central U.S. in all seasons 236 

(Figs. 2a–2d), as well as over the Eastern U.S. in spring (Fig. 2b).  In contrast, damaging winds 237 

mainly dominate over the Eastern U.S. (Figs. 2i–2l).  The tornado frequency accounts for less than 238 

10% of total severe weather events over most of the U.S. (Figs. 2e–2h).  The tornado frequency is 239 

relatively high in the Gulf States and the Southeast during fall (Fig. 2h), likely associated with 240 

both synoptic scale frontal systems and landfalling Atlantic tropical storms and hurricanes (e.g., 241 

Brooks et al. 2003a; Moore and Dixon 2011).   242 

Figure 3 shows the climatological monthly mean daily SCP from January to December, 243 

derived from the CFSR data.  The seasonal variation of SCP is characterized by relatively large 244 

values of SCP (0.2  0.4) in the Gulf States during winter months (Figs. 3a, 3b, 3l).  SCP then 245 

increases during spring (Figs. 3c–3e) and peaks in May (Fig. 3e).  In the meantime, the region of 246 
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large SCP moves northward from the Southern Plains in spring to the Northern Plains in summer 247 

(Figs. 3c–3g).  From the summer to the following winter (Figs. 3h–3l), the SCP value decreases 248 

and the center of the maximums moves back to the south.  The seasonal progression of SCP in the 249 

Central U.S. is similar to that of LSR3 (Fig. 1) and also consistent with that documented in the 250 

literature (e.g., Brooks et al. 2003b; Gensini and Ashley 2011; Tippet et al. 2015).  Therefore, in 251 

terms of seasonal cycle, there is a good correspondence between severe weather and SCP in the 252 

Central U.S.  However, during spring and summer, there is also frequent severe weather in the 253 

Eastern U.S. (Figs. 1c–1h) where SCP values are generally small (Figs. 3c–3h).  Since the majority 254 

of the severe weather events in the Eastern U.S. are damaging winds (Fig.2, right panels), which 255 

are tied to the predominant convective mode or QLCS (Ashley et al. 2019), the SCP more precisely 256 

indicates supercell thunderstorm environments which produce mainly tornadoes and hails, and 257 

does not well identify QLCS environments which are the major wind producers. 258 

The scale of spatial coherence of severe weather over the U.S. is demonstrated by a one-259 

point-correlation map, where the weekly LSR3 anomaly at a selected point (here 95.5oW, 37.5oN) 260 

is correlated with weekly LSR3 at every grid point over the U.S. in the period of 1996 – 2012, as 261 

shown in Fig. 4a.  The correlations of weekly LSR3 at a 0.5o × 0.5o grid with those in the 262 

surrounding areas are generally small, except for the correlation with the base point itself.  263 

Therefore, weekly severe weather activities within a 0.5o × 0.5o area are largely isolated events 264 

with small spatial coherence.  In contrast, the one-point-correlation map for SCP in CFSR at the 265 

0.5o × 0.5o grid (Fig. 4b) shows higher correlations between the selected grid point and the 266 

surrounding grid points, indicating that SCP has a large-scale feature and high spatial coherence.  267 

It is interesting to note that when averaging LSR3 over a 5o×5o box and then re-calculating the 268 

one-point correlation, the result (Fig. 4c) shows much higher spatial coherence for LSR3.  Its large-269 
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scale structure is comparable to that of the 5o × 5o area-averaged SCP (Fig. 4d).  The increase in 270 

spatial coherence for LSR3 from the 0.5o × 0.5o grid to the 5o × 5o box (Figs. 4a and 4c) is much 271 

more significant than that of SCP (Figs. 4b and 4d), which already shows high spatial coherence 272 

at the 0.5o × 0.5o grid (Fig. 4b).  Therefore, it is reasonable to expect that weekly severe weather 273 

over a larger domain may have higher predictability than that over a small area.  It should be noted 274 

that the increase in correlation is at the expense of spatial specificity.  The area-averaging 275 

procedure may enhance the predictability of the severe weather driven by the large-scale 276 

environment as in strongly-forced, synoptically evident events by smoothing out weakly forced 277 

events or events driven by the mesoscale forcing. 278 

 279 

4. GEFS forecast skill for SCP 280 

Because the GEFS predicted SCP will be used as the predictor for LSR3, whether the model 281 

can skillfully forecast SCP is assessed.  The climatological monthly mean daily SCP derived from 282 

the GEFS hindcasts displays very similar seasonal variations to the observations (Fig. 3) for lead 283 

times from 1 day to 14 days (not shown).  The amplitude of the GEFS-predicted mean SCP, 284 

however, decreases with lead time.  Consistent with the decrease in monthly SCP climatology with 285 

lead time, the standard deviation of monthly SCP in the model also decreases with lead time (not 286 

shown).  For example, Fig. 5 shows the long-term mean SCP in May, when the SCP is largest, at 287 

different lead times from 2 days to 12 days based on the GEFS hindcasts.  The 2-day forecasts of 288 

the mean SCP in May (Fig. 5a) is comparable to the observed (Fig. 3e) in terms of both spatial 289 

distribution and magnitude.  The maximum value of the SCP decreases from above 1.6 at the 2-290 

day lead (Fig. 5a) to 1.2 at the 12-day lead (Fig. 5f), about 25% reduction over the 10-day 291 
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difference in lead time.  Despite this, the GEFS model captures the monthly mean daily SCP 292 

reasonably well. 293 

The GEFS forecast skill for SCP is assessed by point-to-point anomaly correlation (AC) 294 

between GEFS SCP and CFSR SCP.  As expected, the forecast skill decreases with lead time from 295 

1 day to 14 days (not shown).  Figure 6 shows the anomaly correlation between weekly (7-day) 296 

mean daily SCPs from CFSR and GEFS hindcasts for week 1 (1-day lead) and week 2 (8-day 297 

lead), respectively, over the 1996–2012 period.  Since SCP may be sporadic in time, the ACs are 298 

calculated using both the Pearson correlation coefficient (Fig. 6a, 6c) and the Spearman rank 299 

correlation coefficient (Fig. 6b, 6d).  Overall, the correlations obtained with the two methods are 300 

close to each other.  Consistent with the AC skill for daily SCP forecasts, the week-2 forecast skill 301 

(Fig. 6b, 6d) is much lower than the week-1 (Fig. 6a, 6c).  However, the week-2 AC skill is still 302 

above the 99% significance level in the Central and Eastern U.S., as estimated by the two-tailed t 303 

test (Snedecor and Cochran 1989).   304 

The dependence of the AC skill for weekly mean SCP upon lead time is further examined 305 

in Fig. 6e with a mean AC averaged over the Central and Eastern U.S. (east of 105oW) at different 306 

lead times from 1 day to 8 days.  The mean AC decreases from 0.57 at 1-day lead to 0.20 and 8-307 

day lead, all above the 99% significance level (green line in Fig. 6e).  When using the GEFS 308 

predicted SCP as a model guidance for the large-scale convective environment (e.g., Carbin et al. 309 

2016), the performance of this approach will depend highly on the GEFS skill in predicting the 310 

SCP, which is modest for week 2, as shown in Fig. 6.  We will show in the next section that the 311 

performance of the hybrid model approach largely depends on the correlation between the GEFS 312 

SCP and observed LSR3, rather than the GEFS skill for SCP.  Thus, given the limited skill of 313 

GEFS for week-2 SCP, a hybrid model is used to produce skillful forecast for week-2 LSR3. 314 



15 
 

 315 

5. Empirical relationship between SCP and LSR3  316 

a. SCP–LSR3 relationship depicted by simple linear correlation 317 

To develop a hybrid forecast model, a statistical relationship between GEFS predicted SCP 318 

and observed LSR3 needs to be first established.  Given the strong seasonality of both SCP and 319 

SLR3 (Figs. 1 and 3; Brooks et al. 2003a, their Fig. 3) and seasonal dependence of the association 320 

between storms and convective parameters (Hart and Cohen 2016), a 3-month moving window is 321 

used in the analysis.  For example, March, April, and May (MAM) data are used to quantify the 322 

relationship for the forecast target month of April.   323 

Figures 7b and 7c show the correlations between observed weekly LSR3 and GEFS week-324 

1 and week-2 forecasts of SCP, respectively, at each 0.5o × 0.5o grid point over MAM 1996–2012.  325 

For comparison, the SCP–LSR3 relationship in observations is also presented in Fig. 7a.  The 326 

relationships between the observed weekly LSR3 and model predicted week-1 SCP (Fig. 7b) are 327 

slightly weaker than those in observations (Fig. 7a), with correlations ranging from 0.2 to 0.3 over 328 

most of the Central and Eastern U.S. and exceeding the 99% significance level estimated by the 329 

two-tailed t test.  However, the correlations of LSR3 with the GEFS predicted week-2 SCP (Fig. 330 

7c) is much weaker than the observations and the week-1 forecasts.  Note that the SCP–LSR3 331 

relationship is weak in south Texas as compared to other regions to the east of the Rockies.  As 332 

discussed by Gensini and Ashley (2011), a low LSR3 frequency (Fig. 1) in this region may be 333 

responsible for the weak relationship to SCP. 334 

Similar relationships between LSR3 and SCP are reestablished using the 5o × 5o area-335 

averaged anomalies, also shown in Fig. 7 (right panels).  The correlations in the right panels are 336 

much higher than the left panels for both week 1 (Fig. 7e) and week 2 forecasts (Fig. 7f), as well 337 
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as in observations (Fig. 7d).  The results indicate stronger correlations between LSR3 and the 338 

model predicted SCP when considering the severe weather over a larger domain, or relaxing the 339 

temporal and spatial constraints of both predictor and predictand (Gensini et al. 2020).  It may also 340 

imply that the mean LSR3 in the 5o × 5o box is more controlled by the large-scale convective 341 

environments than the LSR3 in a 0.5o × 0.5o box.  The correlations between LSR3 and SCP for 342 

other 3-month windows (not shown) are generally comparable to MAM presented in Fig. 7. 343 

 344 

b. SCP–LSR3 relationship identified by leading SVD modes 345 

In addition to the local relationship between SCP and LSR3 at each grid point, their 346 

empirical relationship can also be established by the SVD technique (Bretherton et al. 1992).  This 347 

method can objectively identify pairs of modes (spatial patterns) for SCP and LSR3, both of which 348 

vary with maximum temporal covariance between the two fields.  As shown in Fig. 4, the 5o × 5o 349 

area-averaged anomalies have higher spatial coherence than the 0.5o × 0.5o grid data, especially 350 

for LSR3.  Therefore, both the 5o × 5o area-averaged SCP and LSR3 data over the U.S. are used 351 

in the SVD analysis to enhance their covariations spatially and temporally.   352 

Figure 8 presents the spatial patterns of the three leading SVD modes for weekly SCP (left) 353 

and LSR3 (right), respectively, using the observational data in MAM 1996–2012.  Each SVD mode 354 

is characterized by a distinctive pattern with consistent spatial distributions of SCP and LSR3.  The 355 

first mode displays a monopole structure with above-normal (below-normal) SCP linked to above-356 

normal (below-normal) severe weather frequency in the Central and Southeast U.S. (Figs. 8a and 357 

8d).  In contrast, both the second and third modes exhibit a dipole structure in the meridional (Figs. 358 

8b and 8e) and zonal (Figs. 8c and 8f) directions, respectively.  The second mode suggests that 359 

positive SCP anomalies in the Midwest and negative anomalies in the Gulf States are associated 360 
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with more severe weather in the Midwest and less severe weather in the Gulf States (Figs. 8b and 361 

8e), and vice versa.  The third mode indicates that positive SCP anomalies in the South and 362 

negative anomalies in the Southeast are related to above-normal and below-normal severe weather 363 

activities, respectively, in the two regions (Figs. 8c and 8f).  The three modes account for 62% of 364 

total weekly LSR3 variance.   365 

To better understand the physical mechanisms leading to the three modes, weekly 200-hPa 366 

height anomalies are correlated with the two time series of each SVD mode, and the correlation 367 

maps are shown in Fig. 9.  Each mode shows distinctive correlations with local height anomalies, 368 

and with height anomalies in remote areas as well, such as in the tropics.  In particular, there are 369 

well-defined wave-train patterns in the 200-hPa height field over the Pacific/North American 370 

region associated with both mode 1 (Figs. 9a and 9d) and mode 2 (Figs. 9b and 9e).  These wave 371 

trains originate from the tropics, indicating possible tropical forcing as their source.  Superimposed 372 

onto the background weekly mean flow, the wave train alters the large-scale circulation, such as 373 

jet streams, and thus may modulate severe weather.   374 

A similar SVD analysis using the GEFS week-2 forecasts of SCP reproduces the observed 375 

relationship between SCP and LSR3 well (Fig. 10).  Together, the three modes account for 60% 376 

of total weekly LSR3 variance, comparable to that (62%) in observations.  The results of the SVD 377 

analysis using the GEFS week-1 SCP and observed LSR3 (not shown) are similar to those in Fig. 378 

10.  Furthermore, the first three modes explain 38%, 13%, and 9% of total weekly LSR3 variance, 379 

respectively, similar to the observations. 380 

 381 

6. Dynamical–statistical forecast of week-2 severe weather 382 

a. Forecast skill assessed through cross validation 383 
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A hybrid model is developed to forecast the number of week-2 severe weather events 384 

(LSR3) using the GEFS forecast week-2 SCP as a predictor and based on their empirical 385 

relationships depicted in either Fig. 7 or Fig. 10.  The former applies a linear regression model to 386 

forecast LSR3 at each grid point, whereas the latter projects the week-2 GEFS SCP onto the first 387 

three SCP SVD modes and then predicts LSR3 based on the SCP–LSR3 relationships depicted by 388 

the SVD analysis (Fig. 10).  The forecast skill for week-2 severe weather is cross-validated over 389 

the GEFS hindcast period (1996–2012). 390 

Figure 11 shows the AC skill of both week-1 (left) and week-2 (right) LSR3 forecasts for 391 

MAM 1996–2012 with the two methods.  When applying the linear regression model using the 392 

0.5o × 0.5o grid data, the AC skill ranges from 0.2 to 0.4 and from 0 to 0.2 for week-1 (Fig. 11a) 393 

and week-2 (Fig. 11d) forecasts, respectively, over most of the Central and Eastern U.S.  By 394 

averaging the data over the 5o × 5o box and then using the linear regression model, the AC skill is 395 

improved appreciably for both week 1 (0.3  0.6, Fig. 11b) and week 2 (0.1  0.3, Fig. 11e) over 396 

these regions.  The AC skill of the linear regression model is mainly determined by the strength of 397 

the empirical relationship between SCP and LSR3, and is thus similar to the corresponding 398 

correlation map between GEFS SCP and LSR3 (Figs. 7b vs. 11a, 7c vs. 11d, 7e vs. 11b, and 7f vs. 399 

11e). 400 

The AC skill is further improved (Figs. 11c and 11f) when using the SVD-based SCP–401 

LSR3 relationships.  Clearly, there is spatial variability in skill between the two statistical 402 

techniques.  For the week-1 forecast, the SVD-based forecast skill (Fig. 11c) is better than the 403 

linear regression model (Fig. 11b) in the Central U.S., but worse in the Upper Midwest, east coast, 404 

and Northeast.  For the week-2 forecast, the SVD-based forecast skill (Fig. 11f) is better than the 405 

linear regression model (Fig. 11e) in the Lower Midwest, South and Southeast regions.  These 406 
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improvements are likely due to the inclusion of the spatial covariations of both SCP and LSR3 407 

with their surrounding areas in the SVD relationship, whereas the linear regression model is only 408 

based on the relationship determined by the SCP and LSR3 values at individual grid points. 409 

To examine the dependence of the AC skill on lead time, the forecasts of weekly (7-day) 410 

LSR3 at lead times from 2 days to 7 days are also made with both the linear regression model and 411 

the SVD-based model.  Figure 11g shows the AC skill averaged over the Central and Eastern U.S. 412 

(east of 105oW) as a function of lead time, including both the week-1 (1-day lead) and week-2 (8-413 

day lead) forecasts.  The linear regression model (red curve) performs better at short leads (1–6 414 

days), whereas the SVD-based model (blue curve) performs better at long leads (7–8 days).  Both 415 

models show a mean AC skill of week-2 (8–14 days) severe weather forecast above the 99% 416 

significance level (green line).  In contrast, Gensini and Tippett (2019) found that daily hail and 417 

tornado activities can be skillfully predicted at 9- to 12-day leads. 418 

 419 

b. Real-time forecast for spring 2019 420 

The hybrid dynamical–statistical tool with both the linear regression model and the SVD-421 

based model, and also using the 5o × 5o area-averaged data has been tested and implemented for 422 

experimental real-time forecast of week-2 severe weather in 2019.  The forecast is updated at 10:00 423 

AM Eastern Standard Time on a daily basis.  The week-2 SCP is derived from the 80-member 424 

GEFS operational 16-day forecasts with 20 runs initialized at 00Z and 06Z of the present day and 425 

12Z and 18Z of previous day, respectively.  The real-time week-2 severe weather forecasts consist 426 

of both deterministic and probabilistic formats.  The former is the 80-member ensemble mean 427 

forecast of week-2 LSR3.  The latter is the percentage distribution of the 80-member forecasts in 428 

three categories, namely, above normal, near normal, and below normal.  The thresholds for the 429 
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three categories are determined by the week-2 LSR3 forecast values in the cross validations over 430 

the 1996–2012 period, so that each category accounts for 33.3% of the total forecast events.   431 

Figure 12 shows an example of the real-time week-2 severe weather forecast for the week 432 

of 19–25 May 2019 issued on 12 May 2019, using the linear regression model.  During that week, 433 

there was a severe weather outbreak sequence with 79 EF1–EF3 tornadoes across the Central U.S. 434 

and the Mid-Atlantic (Gensini et al. 2019).  Figure 12a presents the observed total LSR3 during 435 

the 7-day period.  Compared to the observations (Fig. 12a), the 80-member ensemble mean week-436 

2 forecast indicates potential for broader but less intense severe weather activities (Fig. 12b).  The 437 

predicted weekly LSR3 is slightly lower but comparable to the observed in the Central U.S., and 438 

much lower than the observed in the Mid-Atlantic.  The probabilistic forecast is shown in Figs. 439 

12d–12f, respectively, for the three categories.  Most of the Central and Eastern U.S. are in the 440 

above-normal category (Fig. 12d), except the Southeast U.S. in the near-normal category (Fig. 441 

12e).  In particular, almost all regions of the observed LSR3 (circled by blue curve in Fig. 12d) 442 

were predicted with more than 50% chance of above-normal severe weather frequency.  Gensini 443 

et al. (2019) demonstrated that the sources of the predictability for this severe weather event 444 

partially came from anomalous convection over the tropical Indian and Pacific Oceans through an 445 

atmospheric teleconnection. 446 

Figure 12c shows the forecast skill measured by the anomaly correlation between the 447 

observed and predicted 7-day LSR3 for MAM 2019 with a total of 92 week-2 forecasts.  The AC 448 

skill is generally greater than 0.3 in the Central and Eastern U.S., which is above the 99% 449 

significance level (0.27).  However, the forecast skill is low in the Great Plains, especially in the 450 

Northern Plains with negative AC coefficients, as the Northern Plains are not a climatologically 451 

favored area for LSR3 in MAM and the predictable signal is low (Fig. 1).  Overall, Fig. 12c 452 
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indicates considerable skill of the hybrid model in forecasting week-2 severe weather over the 453 

Central and Eastern U.S. for spring 2019. 454 

Figure 13 presents the week-2 forecast for the same week (19–25 May 2019), but using the 455 

SVD-based model.  Compared to Fig. 12, both the forecasts of week-2 LSR3 values (Figs. 12b 456 

and 13b) and the above-normal probability (Figs. 12d and 13d) are similar to each other between 457 

the two methods in this case.  The AC over the entire season (MAM 2019) shows better skills with 458 

the SVD method in west Central and Northern Plains (Fig. 13c).  However, the AC skill is higher 459 

in the regions south of the Great Lakes and in some Gulf States with the linear regression model 460 

(Fig. 12c).  Overall, the AC skills are comparable between the two methods for spring 2019 (Figs. 461 

12c and 13c). 462 

Figure 14 shows another example of week-2 LSR3 forecasts for week 12–18 April 2019 463 

issued on 5 April 2019.  During this week, widespread severe weather with tornado outbreaks 464 

stretched from the South Central U.S. to the East Coast (Fig. 14a).  The forecasts with both 465 

methods captured the severe weather in the Gulf States, but missed that in the Mid-Atlantic States 466 

(Fig. 14b and 14c).  The forecast of weekly LSR3 is closer to the observations with the SVD 467 

technique (Fig. 14c) then with the linear regression method (Fig. 14b).  However, the latter shows 468 

a better probability forecast in the Mid-Atlantic region (Fig. 14d).  Overall, in this case, the 469 

forecasts with the two methods are also comparable. 470 

 471 

7. Conclusions 472 

The development and evaluation of a hybrid dynamical–statistical model for forecasting 473 

week-2 severe weather over the U.S. was presented.  Following the work of Carbin et al. (2016), 474 

the Supercell Composite Parameter (SCP) was used as a predictor to represent the large-scale 475 
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environments and link the dynamical model forecast to actual severe weather, an approach similar 476 

to Gensini and Tippett (2019).  The performance of the hybrid model has been cross-validated 477 

over the 1996–2012 period and also tested in real time for spring 2019.   478 

The hybrid model forecasts suggest a low skill for week-2 severe weather when applying 479 

the linear regression model to the 0.5o × 0.5o grid data.  Weekly severe weather over such a small 480 

area is largely isolated from its surroundings (Fig. 4a).  Thus, it is mainly determined by small-481 

scale and local conditions, but less related to large-scale convective environments.  However, the 482 

forecast skill can be improved by applying the linear regression model to the 5o×5o area-averaged 483 

anomalies.  The weekly severe weather over such an extended area displays some large-scale 484 

features with higher spatial coherence, and thus, is also more closely related to the large-scale 485 

environments.  It is also demonstrated that the forecast skill can be further improved by using the 486 

SVD-based statistical relationship.  The SVD method objectively picks out the dominant spatial 487 

patterns of weekly severe weather that co-vary with the large-scale SCP patterns.  The SVD-based 488 

SCP–LSR3 relationship thus accounts for more variance of weekly severe weather than the 489 

relationships established by the simple linear regression at individual grid points.   490 

Experimental week-2 severe weather outlooks have been tested in real time for spring 491 

2019, using both the linear regression and the SVD approaches, and the 5o × 5o area-averaged data.  492 

Both the forecasts for the weeks of 12–18 April and 19–25 May 2019, when there was a severe 493 

weather outbreak sequence affecting the Central and Eastern U.S., and the anomaly correlation 494 

between forecasts and observations across the entire season suggest considerable skill for week-2 495 

severe weather over the U.S.  It is expected that the dynamical–statistical tool developed in this 496 

study will be implemented into operations in near future. 497 

 498 
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 662 

FIG. 1. Climatological monthly total number of Local Storm Reports (LSR3), including 663 
hail events, tornadoes, and damaging wind events from (a) January to (l) December in the period 664 
of 1996–2012, and (m) climatological time series of monthly mean (thick curve with dots) and 665 
weekly mean (7-day running mean, thin curves) daily total LSR counts over the U.S. from January 666 

(J) to December (D), with red for LSR3, blue for hail, orange for tornado, and green for damaging 667 
wind. 668 
  669 
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 670 

FIG. 2. Ratio (%) of climatological seasonal total number of individual type of severe 671 
weather to the climatological seasonal total number of LSR3 for hail (left), tornado (middle), and 672 

damaging wind (right), respectively, in (a, e, i) DJF, (b, f, j) MAM, (c, g, k) JJA, and (d, h, l) SON. 673 
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 675 

FIG. 3. Climatological monthly mean daily SCP from (a) January to (l) December derived 676 

from the CFSR data in the period of 19962012. 677 

  678 



33 
 

 679 

FIG. 4.  One-point correlation maps for weekly (a) LSR3 and (b) SCP anomalies with data 680 
at 0.5o ×0.5o grid and weekly (c) LSR3 and (d) SCP anomalies with data averaged in the 5o × 5o 681 

box, respectively, over the period of 1996 – 2012.  The base time series is selected at grid point 682 
(95.5oW, 37.5oN), which is marked with “×” in (b). 683 
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 685 

FIG. 5. Climatological monthly mean daily SCP in May derived from the GEFS hindcast 686 

data in the period of 19962012 for different lead times from (a) 2 days to (f) 12 days. 687 

  688 



35 
 

 689 

FIG. 6. Anomaly correlation (AC) between SCPs from CFSR and the GEFS hindcasts for 690 
(a) week 1 and (b) week 2 with the Pearson correlation coefficient and (c) week 1 and (d) week 2 691 

with the Spearman rank correlation coefficient, respectively, over the 1996–2012 period, and (e) 692 
AC averaged over the Central and Eastern U.S. (east of 105oW) for weekly (7-day mean) SCP at 693 
different lead times from 1 day (week-1 forecast) to 8 days (week-2 forecast) with red for the 694 

Pearson correlations and blue for the Spearman rank correlations.  Red curves in (b) and green line 695 
in (e) denote the 99% significance level estimated by the two-tailed t test. 696 
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 698 

FIG. 7. Correlation between observed weekly LSR3 and weekly SCP derived from (a) 699 

CFSR and the GEFS hindcasts for (b) week 1 and (c) week2 with anomalies at the 0.5o × 0.5o grid 700 
(left), and also correlation between observed weekly LSR3 and weekly SCP derived from (d) 701 

CFSR and the GEFS hindcasts for (e) week 1 and (f) week2 with anomalies area-averaged over 702 
the 5o × 5o box (right), respectively, during MAM 1996–2012.  The red curve denotes the 99% 703 
significance level estimated by the two-tailed t test. 704 

  705 



37 
 

 706 

FIG. 8. Maps of homogeneous correlation for the first three SVD modes between 5o × 5o 707 

area-averaged weekly CFSR SCP and observed LSR3 over the U.S. during MAM 1996–2012.  708 
The percentage of the variance explained by each SVD mode is also provided at the bottom right 709 

of each panel for SCP (left panels) and LSR3 (right panels). 710 
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 712 

FIG. 9.  Correlation of weekly 200-hPa height anomaly with SVD CFSR SCP (left panels) 713 
and LSR3 (right panels) time series, respectively, over MAM 1996–2012 for (a, d) mode 1, (b, e) 714 

mode 2, and (c, f) mode 3.  715 
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 717 

FIG. 10. Same as Fig. 8, but for the three leading SVD modes between the GEFS week-2 718 

SCP and observed LSR3. 719 
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 721 

FIG. 11. Forecast skill measured by the anomaly correlation (AC) between the observed 722 

and predicted weekly LSR3 for week 1 (left) and week 2 (right) using the simple linear regression 723 

model with (a, d) the anomalies in the 0.5o ×0.5o grid box and (b, e) the anomalies averaged over 724 
the 5o × 5o box, (c, f) using the SVD-based forecast model also with the anomalies averaged over 725 
the 5o × 5o box, and (g) AC averaged over the Central and Eastern U.S. (east of 105oW) for weekly 726 

(7-day mean) LSR3 at different lead times from 1 day (week-1 forecast) to 8 days (week-2 forecast) 727 
with the red curve for the simple linear regression model and the blue curve for the SVD-based 728 
model..  The AC skill is assessed based on cross-validations over the MAM of 1996–2012 with a 729 
total of 391 weeks.  Red curves in (a)–(f) and green line in (g) denote the 99% significance level 730 
estimated by the two-tailed t test. 731 
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 733 

FIG. 12. (a) Observed and (b) linear regression model predicted LSR3 for the week of 19–734 
25 May 2019, (c) anomaly correlation (AC) skill of the real-time forecasts for weekly LSR3 during 735 

MAM 2019, and probability forecasts of LSR3 for (d) above-normal, (e) near-normal, and (f) 736 
below-normal categories for the week of 19–25 May 2019, based on 80 ensemble members of the 737 
GEFS SCP forecasts.  The red curve in (c) denotes the 99% significance level estimated by the 738 

two-tailed t test.  The blue contour in (b) and (d) is 0.5 of the observed weekly LSR3 shown in (a).  739 

Regions with observed LSR3 climatology less than 0.05 are masked out by grey shading in (c) – 740 

(f). 741 
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 743 

FIG. 13. Same as Fig. 12, but for the SVD-based model forecast. 744 

  745 



43 
 

 746 

FIG. 14. (a) Observed, (b) linear regression model, and (c) SVD-based model predicted 747 
LSR3 for the week of 12–18 April 2019, and the above-normal probability forecast for the week 748 

of 12–18 April 2019 using (d) linear regression model and (e) SVD-based model.  The blue contour 749 
in (b)–(e) is 0.5 of the observed weekly LSR3 shown in (a).  Regions with observed LSR3 750 
climatology less than 0.05 are masked out by grey shading in (d) and (e). 751 


